The Width and Integer Optimization on Simplices With Bounded Minors of the Constraint Matrices

نویسندگان

  • Dmitry V. Gribanov
  • Aleksandr Yu. Chirkov
چکیده

In this paper, we will show that the width of simplices defined by systems of linear inequalities can be computed in polynomial time if some minors of their constraint matrices are bounded. Additionally, we present some quasi-polynomial-time and polynomial-time algorithms to solve the integer linear optimization problem defined on simplices minus all their integer vertices assuming that some minors of the constraint matrices of the simplices are bounded.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On integer program with bounded minors and flatness theorem

Let A be an m × n integral matrix of rank n. We say that A has bounded minors if the maximum of the absolute values of the n × n minors is at most k, where k is a some natural constant. We will call that matrices like k-modular. We investigate an integer program max{cx : Ax ≤ b, x ∈ Zn} where A is k-modular. We say that A is almost unimodular (see [2, 5]) if it is 2-modular and the absolute val...

متن کامل

AN EFFECTIVE METHOD FOR SIMULTANEOUSLY CONSIDERING TIME-COST TRADE-OFF AND CONSTRAINT RESOURCE SCHEDULING USING NONLINEAR INTEGER FRAMEWORK

Critical Path Method (CPM) is one of the most popular techniques used by construction practitioners for construction project scheduling since the 1950s. Despite its popularity, CPM has a major shortcoming, as it is schedule based on two impractical acceptance that the project deadline is not bounded and that resources are unlimited. The analytical competency and computing capability of CPM thus...

متن کامل

Comparing Mixed-Integer and Constraint Programming for the No-Wait Flow Shop Problem with Due Date Constraints

The impetus for this research was examining a flow shop problem in which tasks were expected to be successively carried out with no time interval (i.e., no wait time) between them. For this reason, they should be completed by specific dates or deadlines. In this regard, the efficiency of the models was evaluated based on makespan. To solve the NP-Hard problem, we developed two mathematical mode...

متن کامل

A Mathematical Optimization Model for Solving Minimum Ordering Problem with Constraint Analysis and some Generalizations

In this paper, a mathematical method is proposed to formulate a generalized ordering problem. This model is formed as a linear optimization model in which some variables are binary. The constraints of the problem have been analyzed with the emphasis on the assessment of their importance in the formulation. On the one hand, these constraints enforce conditions on an arbitrary subgraph and then g...

متن کامل

A brief introduction to quaternion matrices and linear algebra and on bounded groups of quaternion matrices

The division algebra of real quaternions, as the only noncommutative normed division real algebra up to isomorphism of normed algebras, is of great importance. In this note, first we present a brief introduction to quaternion matrices and quaternion linear algebra. This, among other things, will help us present the counterpart of a theorem of Herman Auerbach in the setting of quaternions. More ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optimization Letters

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2016